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Abstract This article describes the use of the final condition in the time domain
to obtain bounded and physically reasonable solutions for the convective boundary
condition for the case of a finite slab. The temperature overshoot problem is revisited
for the convective boundary condition. The use of a physically realistic time condi-
tion is shown to remove the overshoot and lead to bounded solutions within Clausius’s
inequality. The ramifications of these findings are discussed. The method of separation
of variables was used to obtain the analytical solution for the wave temperature. The
governing equation for temperature, a hyperbolic partial differential equation (PDE) is
multiplied by exp(τ/2) that results in a hyperbolic PDE less the damping component.
The wave temperature can be used to better understand the transient phenomena of
heat conduction. For materials with large relaxation times, τr >

ρC p
4h , the temperature

can be expected to undergo subcritical damped oscillations. The analytical solution is
presented as an infinite Fourier series solution. The solution was found to be bifur-
cated. For materials with a small relaxation time, the time domain part of the solution
was found to be a decaying exponential and for materials with large relaxation times
the time domain part of the solution was found to be cosinuous. Analytical solutions
for the average temperature of the finite slab were also obtained. The thermal time
constant of the material was found from the solution. The average temperature ver-
sus time was found to exhibit convex curvature for systems with large Biot numbers
and the average temperature versus time was found to exhibit concave curvature for
systems with small Biot numbers. The thermal time constant for the finite slab at dif-
ferent Biot numbers were found and tabulated. The thermal time constant versus Biot
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number was found to exhibit a maxima. When Fourier parabolic equations are used,
the thermal constant decreases monotonically with an increase in Biot number.

Keywords Convective boundary condition · Damped wave conduction and
relaxation · Final condition · Heat waves · Hyperbolic PDE · Infinite Fourier series
solution · Method of separation of variables · Subcritical damped oscillations ·
Taitel paradox · Wave temperature

List of Symbols
a Half-width of a finite slab (m)

Bi Biot number (h
√

ατr
k )

Bi* Biot number ( h
Sa )

C p Specific heat (J · kg−1 · K−1)
h Heat transfer coefficient between the fluid and the slab
k Thermal conductivity (W · m−1 · K−1)
q Heat flux (W · m−2)

S Storage coefficient (ρC p
τr

)
tc Thermal time constant (τrτc) [s]
T Temperature (K)
T1 Fluid temperature (K)
T0 Initial temperature (K)
u Dimensionless temperature (T −T1)

(T0−T1)

<u> Average temperature of the slab
(
<u> = 1

X∗
∫ X∗

0 udX
)

(K)

V (τ ) Function of time only

Vh Velocity of heat
(√

α
τr

)

w Wave temperature (u = wexp(−τ/2))

X Dimensionless distance
(

X = x√
ατr

)

X* Dimensionless distance at x = a
(

X = a√
ατr

)

Greek Symbols

α Thermal diffusivity (m2 · s−1)
τr Relaxation time (s)
τ Dimensionless time ( t

τr
)

τc Dimensionless thermal time constant ( tc
τr

)

φ Function of space only

1 Introduction

Eight reasons were given to seek a generalized Fourier’s law of heat conduction [1].
These include the contradiction of Fourier’s law of heat conduction with the theory of
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microscopic reversibility of Onsager [2], oscillatory discharge of heat in good thermal
conductors at low temperature [3], observation of Landau and Lifshitz [4] that the
speed of heat cannot be greater than the speed of light, Casmir limit during nanoscale
heat transfer [5], singularities found in mathematical models developed to describe
transient events using Fourier’s law of heat conduction [6], overprediction of theory
compared to experiment found in a number of industrially important processes [7–11],
and development of Fourier’s law of heat conduction was based on empirical obser-
vations over a limited set of experimental conditions. The damped wave conduction
and relaxation equation can be written as

q = −k
∂T

∂x
− τr

∂q

∂t
(1)

When the relaxation time is zero, Eq. 1 will revert to Fourier’s law of heat conduction.
When combined with the energy balance equation in one dimension, Eq. 1 becomes
in dimensionless form,

∂u

∂τ
+ ∂2u

∂τ 2 = ∂2u

∂ X2 (2)

where u = (T −T1)
(T0−T1)

, τ = t
τr

, and X = x√
ατr

When the rate of change of temperature with time is much greater than an expo-
nential rise with time eτ , the generalized Fourier’s law of heat conduction equation
will revert to the wave equation [12,13]. Reference to the generalized Fourier’s law of
heat conduction can be traced back to Maxwell [14], and Morse and Feshbach [15].
Cattaneo [16] and Vernotte [17] postulated this equation independently. This equation
can be used to account for a finite speed of heat. Reviews on the generalized Fourier’s
law of heat conduction have been provided by Joseph and Preziosi [18], and Ozisik and
Tzou [19]. Sharma [20–24] discussed the manifestation of the damped wave transport
and relaxation equation in industrial applications and provided bounded analytical
solutions within the constraints of the second law of thermodynamics.

It was shown that the generalized Fourier law of heat conduction can be derived by
including the acceleration term in the free electron theory, the acceleration term in the
Stokes–Einstein theory for molecular diffusion, by accounting for the accumulation
term in the kinetic theory of gases and combining in series Hooke’s elastic element
and Newton’s viscous element in viscoelastic theory. The relaxation time was found
to be a third of the collision time of the electron. The velocity of heat was found to
be identical with the velocity of mass derived from a kinetic representation of the
pressure or the Maxwell representation of the speed of molecules. They derived a set
of equations for length scales comparable to the mean free path of the molecule. Ali
[25,26] used statistical mechanics and the kinetic theory and derived the generalized
Fourier law of heat conduction for monatomic and diatomic gases. Glass and McRae
[27] studied the variable specific heat and thermal relaxation parameter.

The relaxation time has been measured by Brown and Churchill [28], Peshkov [29],
and Zehnder and Rosakis [30]. The relaxation mechanism is fundamental to thermal
resonance that cannot be depicted by Fourier’s law of heat conduction [31]. For a
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thermal wave speed around 900 m · s−1 in 4340 steel at 480 ◦C, the value of the relax-
ation time was found to be of the order of 10−11 s. A table for relaxation times for
different materials at different temperatures and pressures are not available in the lit-
erature. Relaxation times for materials with a non-homogeneous inner structure were
presented by Kaminski [32]. For sodium bicarbonate, they report a relaxation time of
29 s and 20 s for sand, and 54 s for ion exchange materials. Mitura et al. [33] claim that
for the falling drying rate period the average time is of the order of several 1,000 s.
For homogeneous substances, relaxation time values range from 10−8 s to 10−10 s for
gases and 10−10 s to 10−12 s for liquids and dielectric solids as concluded by Sien-
iutycz [34]. Mitra et al. [35] presented experimental evidence of the wave nature of
heat propagation in processed meat and demonstrated that the hyperbolic heat conduc-
tion model is an accurate representation on a macroscopic level of the heat conduction
process in such a biological material. They report a relaxation time of the order of 16 s.

Some investigators have raised some concerns about violations of the second law
of thermodynamics by the generalized Fourier law of heat conduction [36–39]. Taitel
[37] attempted to obtain an analytical solution to the governing equation and found
that the solution temperature for some values exceeded the boundary temperature
indicating a possible violation of the Clausius inequality.

Al-Nimr et al. [40] discussed the “temperature overshoot” phenomena. Al-Nimr and
Naji [41] applied the wave theory of heat conduction to explain the thermal behavior
of anisotropic materials.

Al-Nimr et al. [42] used a perturbation technique for solution of the generalized
equations governing the thermal behavior of thin metal films described by a hyper-
bolic two-step model. The generalized equations of the model contained diffusion
terms in both the electron and lattice energy equations and assume that the incident
laser radiation is absorbed by both the electron gas and solid lattice to account for the
thermal behavior of semi-conducting and impure metals. The perturbation technique
was utilized to eliminate the coupling between the electron and phonon energy equa-
tions when the normalized temperature differences between electrons and phonons is
a small quantity which is true in materials exhibiting high coupling factors. Al-Nimr
[43] discussed the non-equilibrium entropy production under the effect of a dual-
phase-lag conduction model and the phase-lag effect [44]. They used the phase-lag
concept in a study of the thermal behavior of lumped systems [45]. They looked at the
effect of the hyperbolic heat conduction model on the thermal behavior of perfect and
imperfect contact composite slabs under the effect of the hyperbolic heat conduction
model. They have analyzed [46] the thermal behavior of a multilayer slab with imper-
fect contact using the dual-phase-lag heat conduction model. Ramadan and Al-Nimr
[47,48] studied thermal wave reflection and transmission in a multilayer slab with
imperfect contact using the dual-phase-lag model.

Haji-Sheik et al. [49] pointed out some anomalies in the hyperbolic heat equation.
The transient instability, including the intrinsic transition from the desirable stability
(neutral stability) to the ultimate unstable response was investigated by Tzou [50] for
a wide spectrum of heating rates. Tzou confirmed the relaxation time results from
the rate equation within the mainframe of the second law in non-equilibrium, irre-
versible thermodynamics. Schnaid [51] attempted to derive the governing equation
for heat conduction with a finite speed of heat propagation directly from classical
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thermodynamics. Cai et al. [52] presented algebraically explicit analytical solutions
of hyperbolic type heat conduction equations in three dimensions. Lin and Chen [53]
sought numerical solutions of hyperbolic heat conduction in cylindrical and spherical
systems. Antaki [54] examined the dual-phase-lag equation that was introduced by
Tzou and provided an analytical solution for the case of a semi-infinite medium sub-
ject to constant wall flux boundary conditions. Lewandowsha and Malinowski [55]
attempted to provide an analytical solution of the hyperbolic heat conduction equation
for the case of a finite medium symmetrically heated on both sides using the method of
Laplace transforms. Volz et al. [56] used a molecular dynamics numerical solution to
test the validity of the generalized Fourier law of heat conduction. They confirmed the
generalized law when considering heat flux fluctuations at equilibrium. Temperature
overshoot and undershoot were discussed by Tan and Yang [57] during thermal propa-
gation of thermal waves in a thin film under transient conditions. Tian [58] mentioned
that the basic waveform of thermal waves is hyperbolic waves.

This article describes the use of the final condition in the time domain to obtain
bounded and physically reasonable solutions for the convective boundary condition
for the case of a finite slab. The temperature overshoot problem is revisited for the con-
vective boundary condition. The use of a physically realistic time condition is shown
to remove the overshoot and lead to bounded solutions within Clausius’s inequality.
The ramifications of these findings are discussed. The use of the final condition in
time is evaluated to see whether this would lead to solutions within the constraints of
the second law of thermodynamics. The analytical solution for the case of a semi-infi-
nite medium subject to the convective boundary condition is developed. The average
temperature in a finite slab subject to the convective boundary condition is studied at
various Biot numbers. The thermal time constant for a finite slab is obtained.

2 Theory

2.1 Finite Slab With Convective Boundary Condition

Consider a finite slab (Fig. 1) at initial temperature T0 subjected to sudden contact
with a fluid at temperature T1. The transient temperature as a function of space and

time is obtained. The velocity of heat propagation is Vh =
√

α
τr

. The initial and final

conditions in time and boundary conditions in space are given by

t = 0, −a ≤ x ≤ +a, T = T0 (3)

t = ∞, −a ≤ x ≤ +a, T = T1 (4)

t > 0, x = 0,
∂T

∂x
= 0 (5)

t > 0, x = ±a, −k
∂T

∂x
= h (T1 − T ) . (6)

The energy balance on a thin spherical shell at x with a thickness �x is devel-
oped. The governing equation can be obtained after eliminating q between the energy
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Fig. 1 Finite slab heated by fluid with heat transfer coefficient h

balance equation and the derivative with respect to x of the flux equation and intro-
ducing dimensionless variables;

∂u

∂τ
+ ∂2u

∂τ 2 = ∂2u

∂ X2 . (7)

The solution is obtained by the method of separation of variables. First, Eq. 5 is mul-
tiplied by exp(nτ);

∂2(uenτ )

∂ X2 = enτ ∂u

∂τ
+ enτ ∂2u

∂τ 2 . (8)

Let w = uenτ , then,

∂w

∂τ
= enτ ∂u

∂τ
+ nenτ u = nw + enτ ∂u

∂τ

∂2w

∂τ 2 = n
∂w

∂τ
+ nenτ ∂u

∂τ
+ enτ ∂2u

∂τ 2 .

(9)

Combining Eqs. 9 and 7,

∂2w

∂ X2 = ∂w

∂τ
− nw + ∂2w

∂τ 2 − 2n
∂w

∂τ
+ n2w. (10)

For n = 1/2, the damping term drops out and realizing that the wave temperature
w = uexp(τ/2), Eq. 6 becomes

−w

4
+ ∂2w

∂τ 2 = ∂2w

∂ X2 . (11)

The method of separation of variables can be used to obtain the solution of Eq. 11.

Let W = V (τ )φ(X) (12)
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Inserting Eq. 12 into Eq. 11 and separating the variables that are a function of X and τ

only,

φ′′ + λ2φ = 0 (13)

V ′′ = V

(
1

4
− λ2

)
. (14)

The solution for Eq. 13 can be written in a general form as

φ = c1 sin(λX) + c2 cos(λX). (15)

It can be seen that c1 = 0 as the derivative of temperature with respect to X at X = 0
is 0.

Now from the boundary conditions (BC) at the surface,

∂u

∂ X
= −Biu (16)

where

Bi = h
√

ατr

k
(17)

−λ sin(λX) = −Bi cos(λX) (18)
λn

Bi
= cot

(
λna√
ατr

)
(19)

for small a,

λn =
√

hατr

ak
+ nπ =

√
h

Sa
+ nπ (20)

where

S = ρC p

τr
(21)

is the storage coefficient.
The time domain solution would be

V = exp
(
−τ

2

) (
c3 exp

(
τ

√
1

4
− λ2

n

)
+ c4 exp

(
−τ

√
1

4
− λ2

n

))
(22)

or V exp
(τ

2

)
= c3 exp

(
τ

√
1

4
− λ2

n

)
+ c4 exp

(
−τ

√
1

4
− λ2

n

)
. (23)

From the final condition, u = 0 at infinite time. Thus, V φ exp(τ/2) = W , the wave
temperature at infinite time. The wave temperature is that portion of the solution that
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remains after dividing the damping component from either the solution or the govern-
ing equation. For any non-zero φ, it can be seen that at infinite time the LHS of Eq. 23
is a product of zero and infinity and a function of x and is zero. Hence, the RHS of
Eq. 23 is also zero, and hence in Eq. 23, c3 needs to be set to zero. Hence,

u =
∞∑
1

cn exp

(−τ

2

)
exp

(
−τ

√
1

4
− λ2

n

)
cos (λn X), (24)

where λn is described by Eq. 20.
Now, when

√
hατr

ak
> 1/2 (25)

τr >
ak

4hα
(26)

the pulsations in time domain will be seen. Then, the transient temperature profile will
be given by

u =
∞∑
1

cn exp

(−τ

2

)
cos

(
τ

√
λ2

n − 1

4

)
cos (λn X) (27)

λn is given by Eq. 20. cn can be obtained from the initial condition and the orthogonal

property and is found to be 4(−1)n+1

(2n−1)π
.

2.2 Average Temperature in a Finite Slab With Convective Boundary Condition

Consider a finite slab at a initial temperature of T0 heated by air at a temperature of
Tair and heat transfer coefficient, h. It is assumed that the heat transfer coefficient is
constant with respect to time and the ambient temperature is held constant and at an
elevated temperature compared with the initial temperature of the slab (Fig. 2). In

Fig. 2 Average temperature in a
finite slab during convective
heating
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one dimension, the energy balance equation on a thin slice of thickness �x can be
written as

− ∂q

∂x
= (

ρC p
) ∂T

∂t
. (28)

Combining Eq. 28 with the Cattaneo and Vernotte damped wave heat conduction and
relaxation equation, the governing equation can be written as

∂u

∂τ
+ ∂2u

∂τ 2 = ∂2u

∂ X2 , (29)

where

u = (T − Tair)

(T0 − Tair)
; τ = t

τr
; X = x√

ατr
. (30)

The initial and final time conditions and space boundary conditions are

τ = 0, u = 1 (31)

τ = ∞, u = 0 (32)

X = 0, ∂u/∂ X = 0 (33)

X = a√
ατr

−h (Tair− < T >) = −k
∂T

∂x
. (34)

The heat transfer coefficient is defined with respect to the average temperature in the
slab for convenience of later illustration;

− Bi<u> = ∂u

∂ X
, (35)

where Bi = h
√

ατr
k =

√
ατr
k
1
h

The Biot number gives the ratio of the resistance to heat transfer by conduction cor-
rected for thermal inertia effects to the resistance to heat transfer by convection. The
convection is external to the slab, and conduction is internal to the slab. The conven-
tional Biot number is modified with the penetration length ∼(ατr). The penetration
length was obtained from a closed form solution to a step change in temperature at the
surface to a semi-infinite medium by the method of relativistic transformation [13].
Equation 35 is integrated with respect to X between 0 and X*, where X∗ = a/

√
(ατr)

to give
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∂<u>

∂τ
+ ∂2<u>

∂τ 2 = − Bi<u>

X∗ (36)

Let Bi∗ = hατr

ak
= h

Sa
, (37)

where S = storage coefficient, S = ρC p
τr

. Equation 36 is a second-order ordinary
differential equation (ODE) with constant coefficients. The solution to the ODE is

<u> = exp −τ

2

(
a exp

(τ

2

√
1 + 4Bi∗

)
+ b exp

(
−τ

2

√
1 − 4Bi∗

))
(38)

or

<u> exp
τ

2
=

(
a exp

(τ

2

√
1 + 4Bi∗

)
+ b exp

(
−τ

2

√
1 − 4Bi∗

))
(39)

From the final condition in time as given in Eq. 32, at infinite time, the LHS of Eq. 39
becomes zero multiplied by infinity and becomes zero. Hence, a can be seen to be
zero. From the initial condition given by Eq. 31, the average initial temperature is also
1. Hence, b = 1. Thus, the average temperature in the finite slab is given by

<u> = exp
(
−τ

2

)
exp

(
−τ

2

√
1 − 4Bi∗

)
. (40)

On examination of Eq. 40, when Bi∗ > 1/4, the average temperature becomes subcrit-
ically damped and oscillatory. The argument within the square root becomes negative.
The square root of −1 is i. Using De Movrie’s theorem, exp(−iθ) = cos(θ)− i sin(θ).
The real part can be taken and for Bi∗ > 1/4 hατr

ak > 1
4

<u> = e− τ
2 cos

(
τ
√

4Bi ∗ − 1

2

)
. (41)

The dimensionless frequency of the oscillations are
√

4Bi∗ − 1. The frequency of the

oscillations are
√

4Bi∗−1
τr

. As the Biot number is large, the frequency becomes large.
As the relaxation time increases, the frequency becomes smaller. Equation 40 can be
applied for Bi < 1/4 and Eq. 41 for Bi > 1/4. For Bi∗ = 1/4, the average tempera-
ture decays exponentially and is given by exp(−τ/2). The thermal time constant of the
slab can be defined as the time taken to attain, say 2/3 of the final value. The thermal
time constants for this definition for different Biot numbers are shown in Table 1. The
thermal time constant for small Biot numbers are given by

ln(<u>) = −
(τ

2

) (
1 + √

1 − 4Bi∗
)

(42)

or

τc = 2 ln(3)

1 + √
1 − 4Bi∗

, (43)
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Table 1 Thermal time constant
for a finite slab with convective
boundary condition

S. No. Biot number Thermal time
constant (t/τr)

1. 0.01 1.1

2. 0.1 1.24

3. 0.25 2.2

4. 1 1.116

5. 2 0.795

6. 4 0.575

Fig. 3 Average temperature
in a finite slab with convective
boundary condition with
Bi > 1/4

where τc is the thermal time constant as defined. As the Biot number is decreased,
the thermal time constant decreases in this regime. This is for Biot numbers <0.25.
Given the relaxation time, the time constant in s can be obtained by multiplying τc
by the relaxation time. Thus, for a Biot number equal to 0.1 and a relaxation time
equal to 15 s, the thermal time constant can be seen to be 18.6 s. The Biot number is
given by the ratio of the heat transfer coefficient to the storage coefficient multiplied
by the half-width of the slab. As the half-width is increased with the other parameters
remaining the same, the Biot number decreases and the thermal time constant is found
to decrease. For large Biot numbers as the half-width is increased, the thermal time
constant increases.

It can be seen from the table that three different expressions were used to calculate
the thermal time constant. The first regime is when the Biot number is small, this is
for large slabs, a small heat transfer coefficient, and large storage coefficients. A large
storage coefficient translates to small relaxation times and high thermal masses. The
second regime is, when the Biot number is equal to 0.25 when the exponential decay
in time, the solution for the transient temperature in dimensionless form, whereas the
third regime is when the Biot number is greater than 0.25. This is for small slabs and a
small storage coefficient. A small storage coefficient of the medium translates to large
relaxation times and small thermal mass. In such cases, subcritical damped oscillations
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Fig. 4 Average temperature
in a finite slab with convective
boundary condition with
Bi ≤ 1/4
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Fig. 5 Thermal time constant
predictions as a function of Biot
number (h/Sa)

can be found in the temperature in transience. Within the constraints of not having a
negative temperature in the expression which would be a violation of the third law
of thermodynamics, the time averaged temperature for a finite slab is shown for large
and small Biot numbers in Figs. 3 and 4, respectively. There is a change from convex
curvature to concave curvature from large Biot numbers to small Biot numbers. In
the regime of small Biot numbers, the thermal time constant increases with increasing
Biot number, whereas in the regime of large Biot numbers, the thermal time constant
decreases with an increase in the Biot number. The thermal time constant as a function
of the Biot number is shown in Fig. 5. The time taken to steady-state can be determined
from the x intercepts in Figs. 3 and 4.

3 Conclusions

The physically reasonable, final condition in time is used, and the analytical solutions
obtained were found to be within the bounds of the second law of thermodynamics.
The method of separation of variables was used for the case of a finite slab subject to
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a convective boundary condition. It was shown that for materials with large relaxa-
tion times, the temperature will undergo subcritical damped oscillations. This is when
the relaxation time, τr >

aρC p
4h , where a is the half-width of the slab, (ρC p) is the

thermal mass, and h is the heat transfer coefficient of the fluid. The symmetric bound-
ary condition was used in space. Suitable trigonometric approximations were used to
obtain analytical expressions for the eigenvalues. The infinite Fourier series solution
was found to be bifurcated. One solution with the decaying exponential in time is for
materials with low relaxation times, and another solution with cosinuous time is for
materials with large relaxation times. Analytical solutions for the average temperature
of the finite slab were also obtained by the method of separation of variables. It was
found that the slab reached a steady-state temperature after a finite elapsed time. From
the x intercept of the graph for the average temperature versus time, the time taken
to a steady-state was recorded. For systems with small Biot numbers, an analytical
expression for the time taken to steady-state was derived. The thermal time constant
of the materials which is the time taken for the slab to attain a steady-state temperature
was tabulated as a function of different Biot numbers. The thermal time constant of the
system versus the Biot number exhibited maxima as shown in Fig. 5. For systems with
large Biot numbers, the average temperature versus time was found to exhibit convex
curvature, and for systems with small Biot numbers, the average temperature versus
time exhibit a concave curvature. Based on conditions that the average temperature
is expected to undergo, subcritical damped oscillations were derived. These occur for
materials with large relaxation times.
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